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Summary

The main objective of this study was to develop empirical
models with different seasonal lead time periods for the
long range prediction of seasonal (June to September)
Indian summer monsoon rainfall (ISMR). For this purpose,
13 predictors having significant and stable relationships with
ISMR were derived by the correlation analysis of global
grid point seasonal Sea-Surface Temperature (SST) anoma-
lies and the tendency in the SST anomalies. The time lags
of the seasonal SST anomalies were varied from 1 season
to 4 years behind the reference monsoon season. The basic
SST data set used was the monthly NOAA Extended
Reconstructed Global SST (ERSST) data at 2�� 2� spatial
grid for the period 1951–2003. The time lags of the 13
predictors derived from various areas of all three tropical
ocean basins (Indian, Pacific and Atlantic Oceans) varied
from 1 season to 3 years. Based on these inter-correlated
predictors, 3 predictor sub sets A, B and C were formed
with prediction lead time periods of 0, 1 and 2 seasons,
respectively, from the beginning of the monsoon season.
The selected principal components (PCs) of these predictor
sets were used as the input parameters for the models A, B
and C, respectively. The model development period was
1955–1984. The correct model size was derived using all-
possible regressions procedure and Mallow’s ‘‘Cp’’ statistics.

Various model statistics computed for the independent
period (1985–2003) showed that model B had the best pre-
diction skill among the three models. The root mean square
error (RMSE) of model B during the independent test period
(6.03% of Long Period Average (LPA)) was much less than
that during the development period (7.49% of LPA). The
performance of model B was reasonably good during both
ENSO and non–ENSO years particularly when the magni-
tudes of actual ISMR were large. In general, the predicted

ISMR during years following the El Ni~nno (La Ni~nna) years
were above (below) LPA as were the actual ISMR. By
including an NAO related predictor (WEPR) derived from
the surface pressure anomalies over West Europe as an addi-
tional input parameter into model B, the skill of the predic-
tions were found to be substantially improved (RMSE of
4.86% of LPA).

1. Introduction

The long range prediction of the seasonal Indian
Summer Monsoon Rainfall (ISMR) has been one
of the first targets of the tropical climate prediction
research. However, for more than one century, the
prediction for the ISMR has been mainly based on
empirical models (Walker, 1914; 1923; Thapliyal,
1982; Gowariker et al, 1989; 1991; Hastenrath,
1995; Krishna Kumar et al, 1995; Navone and
Cecatto, 1995; Singh and Pai, 1996; Rajeevan
et al, 2000; 2004; Delsole and Shukla, 2002;
Sahai et al, 2002; 2003 etc.). In spite of the in-
herent problems in these empirical models such
as epochal variation in the predictand-predictor
relationship, inter-correlation between the pre-
dictors, changing predictability etc., the main ap-
proach towards the prediction of ISMR is still
based on empirical models. This is because the
alternate approach of prediction based on dynam-
ical models has not yet shown the level of skill
required to accurately simulate salient features of



the mean monsoon and its interannual variability
(Latif et al, 1994; Gadgil and Sajini, 1998;
Goddard et al, 2001; Kang et al, 2002).

The year to year variation of ISMR is attribu-
ted to its natural variability and to its association
with slowly varying climate boundary conditions
(Charney and Shukla, 1981). Among the slowly
varying boundary conditions, sea surface tem-
peratures (SSTs) have the most significant asso-
ciation with the ISMR as SSTs are strongly
coupled to the deep convection and thereby to
the large scale dynamics of the atmosphere. The
association between SSTs in the Pacific Ocean
and ISMR has been known for a long time (Flohn
and Fleer, 1975; Sikka, 1980; Angell, 1981;
Rasmusson and Carpenter, 1983). In general, the
warm (cold) SSTs over central and east Pacific
Ocean are associated with a deficient (excess)
ISMR. The ISMR is also associated with the
SSTs over other ocean basins. Joseph and Pillai
(1984), and Rao and Goswami (1988) observed
warm (cold) SSTs over parts of the Arabian Sea
during pre-monsoon months prior to an excess
(deficient) ISMR. The existence of warm SST
anomalies over the equatorial Indian Ocean was
attributed as one of the reasons for the deficient
ISMR during 1987 (Krishnamurti et al, 1989).
Rajeevan et al (2002) observed a positive relation
between ISMR and the pre-monsoon SST anom-
alies over the Arabian Sea and the southeast
Indian Ocean. Nicholls (1995) found positive cor-
relations between April SSTs over the Indonesia-
northern Australia area and ISMR. Soman and
Slingo (1997) using GCM studies observed a
strong association between SST anomalies over
western equatorial Pacific with ISMR. Ose et al
(1997) found time lagged C.C. between SSTs in
the South China Sea and ISMR.

However, the association between ISMR and
SSTs over the Pacific and other ocean basins
is not one sided. Yasunari (1990) showed that a
weaker (stronger) than normal Asian summer
monsoon is favorable for triggering the El Ni~nno
(La Ni~nna) state of the equatorial Pacific through
weaker (stronger) than normal eastwest circula-
tion in the tropics. He also suggested that the
interannual variability over the Indian and Pacific
sector is predominantly controlled by quasi bi-
ennial periodicity. Joseph and Pillai (1984) ob-
served warming (cooling) of the Arabian Sea after
a deficient (excess) monsoon and suggested a

triennial oscillation in the SSTs over the Arabian
Sea and ISMR. Webster et al (1998) observed
significant covariance in the 2–8 year period
band in the cross wave-let analysis of ISMR
and Ni~nno-3 SST index. These results therefore,
not only indicate the strong mutual association
between SSTs over the various ocean basins
and ISMR but also indicate the possibility of
such a mutual association with large lag periods
(say 2–4 years).

Recently Pai (2003), using global grid point
monthly surface temperature anomaly data for
the period 1901–98, observed significant telecon-
nections between ISMR and SST anomalies over
various geographical areas of the Pacific, Indian
and Atlantic Oceans. For the last 15 years, the
India Meteorological Department has been using
the SST conditions over Ni~nno regions during the
previous monsoon season as one of the param-
eters for its operational models for the long
range prediction of ISMR (Gowariker et al,
1989; Rajeevan et al, 2004). Delsole and Shukla
(2002) used monthly Ni~nno-3 and NAO indices
during six months preceding a monsoon season
as the predictors for the long range prediction of
ISMR during that season. Sahai et al (2003)
observed predictive signals for ISMR in SSTs
over different ocean basins with lags up to
4 years. They have demonstrated the prospects
for the long range prediction of ISMR using only
global SST anomalies. They have developed a
multiple linear regression model based on objec-
tively selected 14 predictors with time lags of 4
seasons to 4 years. The model was able to pro-
vide reasonably correct model predictions during
the independent test period (1980–2001).

In the present study, the main objective was to
develop empirical models for the long range pre-
diction of ISMR using predictors derived from
global seasonal SST anomalies pertaining to the
recent half century (1951–2003). We have ex-
plored the prediction of ISMR with three differ-
ent lead time periods (0, 1 and 2 seasons) and
found that the model with a lead time of 1 season
(3 months) had the best predictive skill among
the 3 models. In this context, it should be men-
tioned that Sahai et al (2003) considered only
one prediction lead time period, i.e., 3 seasons
(9 months). Further we have also explored the
prospect for the improvement in the predictions
based on only global SSTs by including a
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predictor derived from NAO linked pressure anom-
alies over West Europe during the fall season
(September to November) of the previous year.

In the remainder of this paper Sect. 2 describes
the various data sets used in this study and Sect. 3
discusses the methodology used for the deriva-
tion and selection of predictors from the global
SST anomalies, and the development of pre-
diction models with different lead time periods.
Sections 4–6 discuss the various results and
finally Sect. 7 gives the conclusions of the study.

2. Data

The main data set used was the monthly NOAA
Extended Reconstructed Global Sea Surface
Temperature (ERSST) data at 2�� 2� latitude�
longitude grid (Smith and Reynolds, 2003).
These data were obtained from the NOAA-
CIRES Climate Diagnostics Center, Boulder,
Colorado, USA (http:==www.cdc.noaa.gov=). This
data set was produced based on the latest version
of the Comprehensive Ocean Atmosphere Data
Set (COADS) release 2 observations (Woodruff
et al, 1998). The monthly ERSST data are avail-
able from 1854 onwards. In this study we have
used the ERSST data for the period from January
1951 to May 2003.

The ISMR series used in this study was based
on the seasonal (June–September) monsoon rain-
fall data of the 36 meteorological subdivisions in
India. The seasonal summer monsoon rainfall
over the country as a whole was calculated as
the area weighted average of seasonal rainfall of
all 36 subdivisions. The ISMR was expressed as
the percentage departure from the long period
average (LPA) of seasonal summer monsoon
rainfall over the entire country, which is equal
to 88 cm. When the ISMR during a year is
>10% (<10%) of LPA, the year is termed an
excess (deficient) monsoon year. All other years
are termed normal monsoon years.

Another data set used was the monthly surface
sea-level pressure at a 2.5�� 2.5� spatial grid for
the period 1951–2003. These data were taken
from National Center for Environmental Predica-
tion (NCEP) reanalysis (Kalnay et al, 1996). The
monthly mean North Atlantic Oscillation (NAO)
index (normalized sea-level pressure difference
between Gibraltar, Azores and Stykkisholmur,
Iceland) data (Jones et al, 1997) and Ni~nno-3.4

index data (Climate Prediction Centre, NOAA)
for the period 1955–2003 were also used.

3. Methodology

3.1 Derivation of predictors and selection
of best predictor sets

At first, the grid point anomalies of the SSTs
were computed using the 1951–2000 climatol-
ogy. To identify the predictive signals for ISMR,
maps of correlation coefficient (C.C.) between
ISMR and the seasonal SST anomalies, and be-
tween ISMR and tendency in the seasonal SST
anomalies were prepared. Time lags of the SST
anomalies were varied from 1 season to 4 years
behind the reference monsoon season. In this
study, the time lag of a season in years with re-
spect to the reference monsoon year is indicated
by 0 or a negative number in a bracket along
with the season name. For example, the DJF
(December to February) season belonging to the
year of reference monsoon year is indicated as
DJF (0), that belonging to one year previous to
the reference year as DJF (�1), and so on. Seaso-
nal tendency in the grid point SST anomalies were
computed as the difference in the SST anomalies
during one season (say MAM (�1)) from that
during the previous season (say DJF (�1)).

In the C.C. maps, areas of significant C.C. were
identified and over each geographical region, the
SST anomalies within rectangular boxes drawn to
enclose maximum areas of most significant C.C.
were averaged to form time series of seasonal
SST anomaly and SST anomaly tendency indices.
However, the areas of the rectangular boxes were
restricted to a minimum of 10�� 10� (latitude�
longitude) and a maximum of 20�� 20�.

When the number of available predictors is
large it is essential to apply some criteria for
the selection of the best predictor set out of them.
We have used the criteria that the 21 years C.C.
between the selected predictor and ISMR
remained stable (significant at 5% and above)
during the development period.

3.2 Formulation of the prediction model

We have used Multiple Regression Analysis
(MRA) for the development of the prediction
model. However, models based on MRA have

Empirical prediction of Indian summer monsoon rainfall 35



an inherent problem of multi-colinearity caused
by inter-correlation among predictors. To allevi-
ate the problem of multi-colinearity, Principal
Component Analysis (PCA) of the predictors
prior to MRA is a useful technique. PCA also
reduces the dimensionality and noise level in
the data set as the first few significant compo-
nents account for most of the variation of the
original data (Rao, 1964). Singh and Pai (1996)
have used PCA followed by MRA to develop a
Principal Component-Regression (PCR) model for
the prediction of the seasonal (June–September)
ISMR for the country as a whole based on pre-
dictors from the Indian Ocean only. Rajeevan
et al (2000) on the other hand used a PCR model
for the prediction of seasonal summer monsoon
rainfall over the homogeneous rainfall regions of
India.

If PCA is applied to a set of time series of
‘‘m’’ inter-correlated standardized predictors for
‘‘n’’ years and select any ‘‘p’’ Principal Compo-
nent (PC) modes (p<m), we can write the PCR

model as Y5BF001 e, where Y is the (n� 1)
predictand matrix, B is the (1� p) matrix of
regression coefficients, F00 is the (n� p) matrix
of selected PC scores and e is the (n� 1) error
matrix.

In selecting suitable PC modes, first we
retained ‘‘k’’ PCs which together explained at
least 80% of the total variability of the predictor
set. However, the best model is one that would
use the lowest possible number of PCs and

explain the most variance during the develop-
ment period. The selection of the best model
was achieved by the use of all-possible re-
gressions procedure along with Mallow’s ‘‘Cp’’
statistics (Delsole and Shukla, 2002). In this
procedure, all possible simple linear regres-
sions between each of the ‘‘k’’ PCs and the
ISMR were first constructed. Then, the model
with least root mean square error (RMSE) dur-
ing the development period was selected as the
best model among all the possible 1-parameter
models.

The PC corresponding to the best 1-parameter
model was then used in combination with each
one of the remaining ‘‘k� 1’’ PCs to construct
‘‘k� 1’’ two parameter multiple regression
models. The best model among all possible 2-
parameter models was selected using the above
criteria. In the same way best 3-parameter model
was selected and so on. The procedure was
stopped when there was no further reduction in
the RMSE. However, the correct model size
(number of PCs used as input) was determined
by plotting Mallow’s ‘‘Cp’’ against pþ 1. Here p
is the number of PCs used as input to the regres-
sion model and Mallow’s ‘‘Cp’’ is given as

Cp ¼ e2
X

e2
Y

ðN�p�2Þ

0
@

1
A� ðN � 2ðp þ 1ÞÞ;

where X and Y are the models with ‘‘p’’ and
‘‘pþ 1’’ PCs, respectively, as the input, and e2

X

Fig. 1. Spatial pattern of correlation coefficient
(C.C.) between ISMR and SST anomalies during
the MAM (0) season over the South Indian
Ocean. The C.C. was computed using the data
for the period 1955–1984. The areas of C.C.
significant at 5% level and above are shaded
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and e2
Y are the mean squared errors of models X

and Y, respectively, during the model develop-
ment period consisting of N cases. When the
correct model size is near pþ 1, Cp will roughly
be equal to pþ 1. Therefore, when the value of
Cp corresponding to a pþ 1 value was below but
close to the 45� line, the correct model size was
taken as p.

The skill of the models was tested as an inde-
pendent period (1985–2003) and was measured
by calculating model statistics such as the C.C.
between actual and predicted ISMR, RMSE and

bias (BIAS). The RMSE and BIAS were calcu-
lated using the following equations;

RMSE ¼
Xi¼M

i¼ 1

ðRip � RiÞ2=M

" #1=2

;

BIAS ¼
Xi¼M

i¼ 1

ðRip � RiÞ=M;

where Rip and Ri are the predicted and actual
ISMR values for the ith year and M is the number
of years.

Fig. 2. 21 years moving C.C.
between ISMR and selected 13
predictors from (a) Indian, (b)
Pacific, and (c) Atlantic Oceans
for the period 1955–2003. The
horizontal dotted lines represent
the C.C. significant at 5% level
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4. Predictive signals from SST anomalies

4.1 Correlation Coefficient (C.C.) maps

Seasonal SST anomalies and seasonal SST
anomaly tendencies with lags from one season
to 4 years were correlated with ISMR using
data for the period 1955–1984. The beginning
year of the C.C. period was taken as 1955,
accounting for the maximum lag of 4 years
whilst retaining a constant period of 30 years
(1955–1984) for the preparation of all the
C.C. maps. Altogether 35 C.C. maps (18 for
seasonal SST anomalies and 17 for seasonal
tendency in the SST anomalies) were prepared.
Figure 1 shows the C.C. map over the South
Indian Ocean for the MAM (0) season. The
areas where C.C. is significant at 5% or above
are shaded. Rajeevan et al (2002) have dis-
cussed the physical linkage between the SST
anomalies over the Southeast Indian Ocean
during pre-monsoon and ISMR in detail. In
Fig. 1, the rectangular box indicates the area
selected for averaging. In a similar way, time
series of 28 potential predictors from various
oceanic regions with different seasonal lags
were obtained from the 18 correlation maps of
seasonal SST anomalies. From the 17 correla-
tion maps of tendency in seasonal SST anoma-
lies, another 23 predictors were also obtained.

4.2 Predictor sets with different
prediction lead times

The 21 year moving C.C.s between the above
derived 51 predictors and ISMR showed that there
were 13 predictors which have stable relationships
with the ISMR. Figure 2 shows the moving 21 year
C.C. of ISMR with these 13 selected predictors. As
can be seen in the Fig. 2, for all predictors, the
relationship with the ISMR is stable not only
during the development period but also during
most of the test period. Of these 13 predictors, 7
were derived from the seasonal SST anomalies and
6 were derived from the seasonal tendency in the
SSTanomalies. The geographical domains of these
13 predictors and their C.C.s with ISMR are given
in Table 1. As seen in Table, 4 predictors were
derived from the Indian Ocean, 6 from the Pacific
Ocean and 3 from the Atlantic Ocean. However,
the longest lag time of any of the predictors was of
3 years behind the reference monsoon year.

From Table 1, it is clear that by the collective use
of all 13 predictors we can predict ISMR at the end
of MAM (0). This means that the prediction lead
time is nil or 0 season with respect to the beginning
of the reference monsoon season. Hereafter, this
set of 13 predictors is termed set A. By removing
3 predictors (IND4, PAC5 and PAC6) pertaining
to the MAM (0) from set A, a second predictor
set (set B) containing 10 predictors with prediction

Table 1. Details of the selected 13 predictors. The predictors from Indian, Pacific and Atlantic Oceans are indicated by the short
names IND, PAC and ATL, respectively. The time lag of the predictor is indicated by the season name and a number in bracket.
The season name corresponds to the season over which the SST anomalies were averaged to derive the predictors and the
number in the bracket is the lag in years behind the reference monsoon year

No. Predictors Time lag Geographical domain C.C. with ISMR
1955–1984

C.C. with Ni~nno-3.4
1955–1984

Previous
year

Reference
year

JJA (�1) JJA (0)

1 IND1 SON (�3)� JJA (�3) 40� S–30� S, 50� E–70� E 0.23 0.36� �0.20 �0.28
2 IND2 DJF (�1) 28� S–18� S, 104� E�114� E 0.44� �0.46�� �0.27 �0.02
3 IND3 DJF (0) 20� S–10� N, 80� E–100� E �0.46�� 0.43� 0.68�� �0.18
4 IND4 MAM (0) 30� S–20� S, 80� E–100� E �0.02 0.40� 0.36� �0.24
5 PAC1 DJF (�2) 30� S–20� S, 100� W–80� W 0.20 �0.42� �0.35 0.19
6 PAC2 JJA (�1)�MAM (�1) 30� N–40� N, 170� E–170� W 0.42� �0.48�� �0.36� 0.11
7 PAC3 JJA (�1)�MAM (�1) 10� S–0� , 120� E–140� E 0.00 �0.46�� �0.31 0.38�
8 PAC4 SON (�1) 20� S–10� S, 130� W–110� W �0.57�� 0.36� 0.78�� �0.12
9 PAC5 MAM (0) 40� N–50� N, 170� W–150� W 0.05 �0.50 �0.22 0.44�

10 PAC6 MAM (0)�DJF (0) 6� S–6� N, 150� W–130� W 0.66�� �0.43� �0.87�� 0.37�
11 ATL1 MAM (�3)�DJF (�3) 38� S–28� S, 40� W–20� W �0.08 0.47�� �0.02 �0.16
12 ATL2 SON (�1)� JJA (�1) 50� S–40� S, 60� W–40� W 0.40� �0.57�� �0.39� 0.35
13 ATL3 DJF (0) 20� N–30� N, 100� W–80� W 0.13 �0.36� �0.27 0.28

� Significant at �5% level, �� Significant at �1% level
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lead time of 1 season (3 months) was created. By
removing 2 more predictors pertaining to DJF (0)
from set B (IND3, ATL3), a third predictor set
(set C) was formed containing 8 predictors with a
prediction lead time of 2 seasons (6 months). Thus,
there are 3 predictor sets A, B and C with predic-
tion lead time periods of 0, 1 and 2 seasons with
13, 10 and 8 predictors, respectively.

5. Prediction models of ISMR
with different lead time periods

In this section, we describe the details of the pre-
diction models for ISMR developed using the
above 3 predictors sets (A, B and C). We used data
for the first 30 years (1955–1984) for the develop-
ment of the models and data for the next 19 years
(1985–2003) for the independent verification.

5.1 Significant PC modes of the predictors sets

Table 2 shows the lower triangle of the correlation
matrix of the 13 predictors used for forming the
three predictor sets. There were significant inter-
correlations among many of the predictors. PCA
was carried out on each of the 3 predictor sets for
the development period and the first few PCs (6, 5
and 5 from sets A, B and C, respectively) that to-
gether explained at least 80% of the total variabil-
ity of the respective data set were retained. The
retained PCs from each of the predictor sets A, B
and C were then used to develop the best multiple
regression prediction models (models A, B and
C). Following the all-possible regressions proce-

dure and Mallow’s ‘‘Cp’’ statistics described in
Sect. 3.2, the correct model size of model A was
3 (PC1, PC2 and PC4), that of model B was 2
(PC1, PC2) and that of model C was 1 (PC1). It
should also be mentioned that the eigen values of
all the PCs selected to construct the best models
were �1. PC scores of all the selected PCs were
then computed for the test period (1985–2003).

As discussed above, the common parameter in
all the 3 models is PC1. On examining the prin-
cipal loading vector corresponding to PC1, it was
found that in all the 3 cases, magnitude of load-
ings by the predictors pertaining to period from
JJA (�1) season to MAM (0) season (seasonal
lags �1 year) was large compared to that by
other predictors. The signs of the loadings were
same as that of the C.C.s between the correspond-
ing predictor and the ISMR (Table 1). Thus, PC1
can be assumed as the composite predictive sig-
nal evolving in the global (particularly tropical)
SST anomalies from the beginning of the pre-
vious monsoon season. As seen in Table 1, most
of the predictors with seasonal lags �1 year
were significantly correlated with Ni~nno-3.4 of
JJA (�1) season. However, these predictors were
poorly correlated with the Ni~nno-3.4 of JJA (0)
season. The correlations of PC1 with Ni~nno-3.4
index during previous JJA season (JJA (�1))
and that during the concurrent JJA season
(JJA (0)) were also calculated for the period
1955–1984. Corresponding to sets A, B and C,
the C.C.s of PC1 with Ni~nno-3.4 of JJA (�1) were
0.70 (0.1%), 0.59 (1%), and 0.47 (1%), respec-
tively, and that with Ni~nno-3.4 of JJA (0) were

Table 2. Lower triangle of the correlation matrix of the selected 13 predictors calculated using data for the period 1955–1984.
The C.C.s significant at 5% and above are shown by bold numbers

Predictors !
#

IND1 IND2 IND3 IND4 PAC1 PAC2 PAC3 PAC4 PAC5 PAC6 ATL1 ATL2 ATL3

IND1 1.00
IND2 �0.08 1.00
IND3 0.20 20.36 1.00
IND4 0.22 �0.27 0.63 1.00
PAC1 �0.05 0.23 �0.24 �0.05 1.00
PAC2 �0.11 0.59 �0.22 �0.21 0.47 1.00
PAC3 0.00 0.04 20.37 20.36 0.26 0.27 1.00
PAC4 �0.10 �0.30 0.70 0.40 �0.18 20.37 �0.28 1.00
PAC5 �0.10 0.19 �0.28 �0.32 0.38 0.32 0.48 20.47 1.00
PAC6 0.06 0.41 20.68 20.36 0.39 0.39 0.30 20.79 0.31 1.00
ATL1 0.61 �0.33 0.17 0.18 �0.12 20.36 �0.17 �0.06 �0.01 �0.07 1.00
ATL2 20.37 0.23 �0.31 �0.11 0.36 0.47 0.22 �0.27 0.18 0.47 �0.28 1.00
ATL3 �0.03 0.36 �0.18 �0.26 0.37 0.35 0.31 �0.30 0.43 0.37 �0.26 0.22 1.00

Empirical prediction of Indian summer monsoon rainfall 39



�0.39 (5%), �0.33, �0.32, respectively. Thus,
one factor that can be significantly associated
with PC1 is the ENSO of the previous year.
However, the C.C. between the Ni~nno-3.4 index
during JJA (�1) was not significantly correlated
with ISMR. The C.C. between these two quanti-
ties was 0.30. This result, therefore, indicates the
possibility of factors other than ENSO which can
be associated with the PC1.

From Table 1, it is evident that most of the
predictors with seasonal lags �1 year were sig-
nificantly related to the ISMR of previous year.
Similarly, the C.C.s between ISMR of the pre-
vious year and PC1 corresponding to models A,
B and C during the period 1955–1984 were
�0.49 (1%), �0.48 (1%), �0.44 (5%). Thus, both
the monsoon and ENSO of the previous year can
act as driving forces behind the composite pre-
dictive signal (for the subsequent monsoon)
evolving in the global SST anomalies between
previous and reference monsoon seasons. Further-
more, the predictive relationship of ISMR of ref-
erence year with PC1 was very much stronger
than that with ENSO (Ni~nno-3.4) of previous year,
although there is a strong concurrent relationship
between ISMR and ENSO (the C.C. between
ISMR and Ni~nno 3.4 of JJA (0) was 0.61 (1%)).
The C.C.s between ISMR of the reference year
and PC1 corresponding to models A, B, and C
were 0.71, 0.73, and 0.74 all at 1% significant
level. These results also indicate significant asso-
ciation between ISMR and the global SST
anomalies in the quasi-biennial scale.

5.2 The performances of the best
prediction models

In the previous section, the construction of 3
models, A, B and C, with prediction lead time

periods of 0, 1, and 2 seasons, respectively,
for the prediction of ISMR were described.
The model regression equations computed for
the development period (1955–1984) are given
below.

RA ¼ 0:962 þ 7:953 � PC1 þ 3:394 � PC2

þ 1:539 �PC4

RB ¼ 0:955 þ 8:206 � PC1 þ 1:915 � PC2

RC ¼ 0:957 þ 8:307 � PC1;

where RA, RB, and RC are the predicted values of
ISMR corresponding to the models A, B and C.
Various details and statistics of these models are
given in the Table 3. The skill of a model is
mainly measured by its performance during the
independent test period. As seen from the various
model statistics during the test period given in
the Table 3, model B has the better skill in com-
parison to other two models. It is also important
to note that RMSE of model B during the test
period (6.03% LPA) is smaller than that during
the development period (7.49% of LPA).

Figure 3 shows the performance of model B. It
can be seen that the model was able to correctly
indicate the sign of the actual ISMR during most
of the years (particularly during the extreme
years) of both development and independent test
periods. In Fig. 3, the El Ni~nno and La Ni~nna years
are marked by letters E and L, respectively. As ex-
pected a general inverse relationship is observed
between the phases of ENSO and ISMR. The
predicted ISMR during years succeeding El Ni~nno
(La Ni~nna) years were mostly above (below) LPA.
During the development period, there were 7
El Ni~nno years (1957, 1963, 1965, 1969, 1972,
1977 and 1982) and 8 La Ni~nna years (1956,
1964, 1967, 1970, 1971, 1973, 1975 and 1984).
During the years (except in 1966) following

Table 3. Details and statistics of the models A, B, C and B0

Model ! A B C B0

Input parameters
to the model

PC1, PC2 and PC4
of set A

PC1, PC2
of set B

PC1 of set C PC1, PC2 of set B
and WEPR

RMSE (1955–1984) as % of
Long Period Normal (LPA)

7.07 7.49 7.62 6.71

RMSE (1985–2003) as % of LPA 7.15 6.03 6.62 4.86
C.C. between observed and model
ISMR (1985–2003)

0.74 0.83 0.73 0.86

BIAS (1985–2003) as % of LPA 3.24 2.45 1.34 0.71
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El Ni~nno years, the predicted ISMR values were
above LPA. But in all these years (including
1966), the signs of both the actual and the
predicted ISMR were the same. On the other
hand, during years (except in 1971 and 1976) fol-
lowing the La Ni~nna years, both the actual and the
predicted ISMR values were below LPA. The
association between ENSO events during previous
year and predicted ISMR was not surprising as the
most significant PC mode (PC1) of the predictor
set (input parameter to the model) was strongly
related to the Ni~nno-3.4 index of the previous mon-
soon season (see earlier section). But the impor-
tant point was that during years following El Ni~nno
(La Ni~nna) years, even when the actual ISMR was
below (above) LPA, the signs of the actual and
predicted ISMR were the same.

During the independent test period the signs of
the predicted ISMR during the years following
the El Ni~nno (La Ni~nna) years were mostly positive
(negative) and the same as that of the actual
ISMR. The exceptions were during 1989 and
1996, which followed La Ni~nna years, and 1992
which followed an El Ni~nno year. During 1989 and
1996, actual (predicted) ISMR was above (below)
LPA. But both actual and predicted ISMR were
very close to the LPA. During 1992, both actual
and predicted ISMR were below LPA.

6. Inclusion of NAO linked surface
pressure anomalies over West Europe
in the model based on SST anomalies

Rajeevan (2002) showed an association between
NAO related winter mean sea-level pressure
anomalies over northwest Europe and ISMR on
an inter-annual time scale. Pai (2004) showed

that the weakening of ENSO-ISMR during the
recent decade (1990’s) was due to the persistant
positive phase of the winter NAO and below
normal winter and spring Eurasian snow cover.
However, the NAO is quite independent of ENSO.
In Sect. 5.1, we have shown that the most signifi-
cant PC mode (PC1) of the predictor data used for
developing prediction models was strongly asso-
ciated with ENSO. Now we examine the perfor-
mance of model B, which was the best among the
3 models based on only SST anomalies, by includ-
ing an NAO related predictor as one of the inputs
to model B. The NAO related predictor (WEPR)
was derived by averaging the NCEP grid point
surface pressure anomalies (base period 1951–
2000) over West Europe (40� N–50� N, 10� W–
10� E) during the SON (�1) season. As WEPR
has a seasonal lag of one season, the prediction
lead period of the modified model B (model B0)
was the same as that of model B. The C.C. be-
tween WEPR and ISMR for the development per-
iod (1955–84) was �0.46 (1%) and the 21 years
moving C.C.s between these two parameters were
above the 5% significant level during both the
development and training periods. The WEPR
also showed a strong and stable association with
concurrent NAO index with a C.C. of 0.44 (5%)
for the period 1955–84.

The WEPR was standardized before using it as
a predictor in the model. It should be mentioned
that WEPR showed no correlation with the 2 PCs
used in model B. The model equation of the new
model B0 developed using the data for the period
1955–84 is given below.

RB0 ¼ 0:954 þ 7:923 � PC1 þ 1:059 � PC2

� 3:508 �WEPR;

Fig. 3. Actual and predicted
ISMR by the Model B with lead
time of one season during the
period 1955–2003. The El Ni~nno
and La Ni~nna years are indicated
by letters E and L, respectively.
The predicted ISMR by model B0

is shown by solid line
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where RB0 is the predicted ISMR. The model sta-
tistics of model B0 are given in Table 3 along
with that of the models A, B and C. The perfor-
mance of model B0, particularly in the indepen-
dent test period, was better than the models based
on SST predictors only. In Fig. 3, the predicted
ISMR for model B0 is shown by the solid line. In
Fig. 3, it can be seen that during most of the years,
the error in the prediction (predicted – actual) of
ISMR by model B0 was smaller than that of model
B. In 16 of the 19 years of the independent test
period (except 1989, 1990 and 1996), the sign of
the ISMR predicted by model B0 was the same as
that of the actual ISMR. Moreover, during 9 of
these 16 years which included year 2002, a highly
deficient monsoon year (ISMR¼�19%), the ab-
solute prediction errors were �3% of LPA. These
results, therefore, showed significant improve-
ment in the accuracy of ISMR predictions by in-
cluding NAO related WEPR in the models based
on SST anomalies only.

7. Conclusions

A search for the potential predictors in the global
seasonal SST anomalies and tendency in the sea-
sonal SST anomalies for the long range pre-
diction of ISMR showed that there were 13
predictors with stable and significant relationships
with ISMR. From these predictors, derived from
various areas of three tropical oceans (Indian,
Pacific and Atlantic) with time lags varying from
1 season to 3 years, 3 predictor sets A, B and C
were formed with prediction lead time periods
of 0, 1 and 2 seasons, respectively, with respect
to the beginning of the monsoon season. The se-
lected principal components (PCs) of these pre-
dictor sets were used as the input parameters for
the models A, B and C, respectively. The correct
model size was derived using all-possible regres-
sions procedure and Mallow’s ‘‘Cp’’ statistics.

From various model statistics computed for
the independent period, it was found that
model B with a lead time of 1 season had the
best predictive skill among the three models.
The RMSE of model B during the independent
test period (6.03% of LPA) was much less than
that during the development period (7.49% of
LPA). Model B performed well during both
ENSO and non–ENSO years particularly during
years when the magnitudes of actual ISMR were
large.

In general, the predicted ISMR during the
years following El Ni~nno (La Ni~nna) years was
above (below) LPA as was the actual ISMR. This
was because, the most significant principal com-
ponent mode of the predictor data (PC1) was
found to be significantly associated to the state
of ENSO during the previous year. PC1 repre-
sented a composite predictive signal for ISMR
evolving in the global (particularly tropical)
SST anomalies during the period from the pre-
vious monsoon season to the pre-monsoon sea-
son of the reference year. However, the predictive
relationship between PC1 and ISMR was very
much stronger than between ENSO itself and
ISMR. This was because PC1 was also associ-
ated with the ISMR of previous year. In short, a
quasi-biennial relationship was evident between
the composite state of global SST anomalies rep-
resented by PC1 and ISMR.

Model B0 developed by using an NAO related
predictor (WEPR) derived from surface pres-
sure anomalies over West Europe as an addi-
tional input parameter to model B performed
much better than model B. The RMSE of
model B0 during the independent test period
(4.86% of LPA) was substantially lower than
that of model B (6.03% of LPA). This result
provides the encouraging option of including
predictors derived from climatic fields other
than SST as additional input parameters into
models based on SSTs only for better predic-
tion of ISMR.
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